Object-Oriented Modelling and Simulation: State of the Art and Future Perspectives

Francesco Casella
francesco.casella@polimi.it

Dipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di Milano - Italy
Outline

- Principles of Equation-Based Object-Oriented Modelling (EOOM)
- Introduction to the Modelica OO Modelling Language
 - A bit of history
 - The language
 - The computational model
- Paradigmatic use cases
- The future (according to myself):

 OO modelling of very large distributed cyber-physical systems
Principles of Equation-Based Object-Oriented Modelling
Principle #1: Declarative Modelling

Declarative Modelling

Models should describe how a system behaves

not how the behaviour can be computed

There are no input and output variables in real life

(Yaman Barlas, SimulTech 2016 keynote)

The best formalization of a simulation model
is more easily understood by a human

not by a computer
Principle #1: Declarative Modelling

Equation-Based modular (→ Object-Oriented) description

- The model of each component is described by equations
- The model is independent of the components it is connected to
- Physical connections ↔ *connection equations*

Example: RC component

\[
\begin{align*}
 x + RI &= V \\
 C \dot{x} &= I
\end{align*}
\]

(DAE – declarative model)
Principle #1: Declarative Modelling

The solution work-flow is only determined at the overall system level.

\[x + RI = V \] (RC network)
\[C \dot{x} = I \]
\[V_0 = f(t) \] (voltage generator)
\[V_0 = V \] (Kirchoff's law - mesh)
\[I_0 + I = 0 \] (Kirchoff's law - node)

\[
\begin{align*}
V_0 &= f(t) \\
V &= V_0 \\
I &= \frac{V - x}{R} \\
I_0 &= -I \\
\dot{x} &= \frac{I}{C}
\end{align*}
\]

x := x_initial

\[
\begin{align*}
x_0 &= x_initial \\
t_0 &= t_initial \\
V_0 &= f(t) \\
V &= V_0 \\
I &= (V - x)/R \\
I_0 &= -I \\
\dot{x} &= I/C \\
x &= x + h*\dot{x} \\
t &= t + h
\end{align*}
\]
Principle #1: Declarative Modelling

The solution work-flow is only determined at the overall system level

\[x + RI = V \] \hspace{1cm} (RC network)
\[C \dot{x} = I \]

\[V_0 = f(t) \] \hspace{1cm} (voltage generator)

\[V_0 = V \] \hspace{1cm} (Kirchoff's law - mesh)
\[I_0 + I = 0 \] \hspace{1cm} (Kirchoff's law - node)

\[\dot{x} = \frac{I}{C} \]

\[x := x_{\text{initial}} \]
\[t := t_{\text{initial}} \]
 loop
 \[V_0 = f(t) \]
 \[V := V_0 \]
 \[I := \frac{V - x}{R} \]
 \[I_0 := -I \]
 \[\dot{x} := \frac{I}{C} \]
 \[x := x + h*\dot{x} \]
 \[t := t + h \]
 end loop

performed automatically by a tool!
Principle #1: Declarative Modelling

The same component can be reused in different contexts

\[x + RI = V \] \hspace{1cm} (RC network)

\[C \dot{x} = I \]

\[I_0 = f(t) \] \hspace{1cm} (current generator)

\[V_0 = V \] \hspace{1cm} (Kirchoff’s law - mesh)

\[I_0 + I = 0 \] \hspace{1cm} (Kirchoff’s law - node)

\[I_0 = f(t) \]

\[I = -I_0 \]

\[V = x + RI \]

\[V_0 = V \]

\[\dot{x} = \frac{I}{C} \]

\[x := x_{\text{initial}} \]

\[t := t_{\text{initial}} \]

\[\text{loop} \]

\[I_0 := f(t) \]

\[I := -I_0 \]

\[V := x + R*I \]

\[V_0 := V \]

\[\frac{dx}{dt} := I/C \]

\[x := x + h*\frac{dx}{dt} \]

\[t := t + h \]

\[\text{end loop} \]

\[x := x_{\text{initial}} \]

\[t := t_{\text{initial}} \]

\[\text{loop} \]

\[V_0 = f(t) \]

\[V := V_0 \]

\[I := (V - x)/R \]

\[I_0 := -I \]

\[\frac{dx}{dt} := I/C \]

\[x := x + h*\frac{dx}{dt} \]

\[t := t + h \]

\[\text{end loop} \]
Principle #2: Modularity

Modularity

Models interact through physical ports
their behaviour depends explicitly on the port variables
not on the actual connected components

A model can be internally described
as the connection of other models
Principle #2: Modularity

• Physical ports: coupled effort and flow variables
 – Electrical systems: Voltage and Current
 – 1D Mechanical systems (Tr): Displacement and Force
 – 1D Mechanical systems (Rot): Angle and Torque
 – Hydraulic systems: Pressure and Flow
 – Thermal Systems: Temperature and Thermal Power Flow
 – ...

• Connection of N ports \leftrightarrow Connection equations

\[e_1 = e_2 = ... = e_N \quad \text{(Same voltage / displacement / angle / pressure)} \]
\[\sum f_j = 0 \quad \text{(Currents / Forces / Torques / Flows sum to zero)} \]
Principle #2: Modularity
Principle #3: Inheritance

Inheritance

Parent-Child (“is-a”) relationships can be established among models

A child model inherits the parent features (variables, parameters, equations, sub-models) and adds its specific ones
Principle #3: Inheritance

Thermal Resistor

Resistor

OnePort

Capacitor

Is a

Is a

Is a
EOOLTs

Several EOO modelling languages and tools follow this paradigm

- gPROMS
- Modelica
- EcoSimPro
- SimScape

In this talk I will mainly focus on Modelica, which I know best
The Modelica Language
Facts & Figures - I

- Equation-Based, Object-Oriented Modelling Language
- Tool-independent, defined by non-profit Modelica Association
- Version 1.0 rolled out in 1997, heir of earlier OOM languages Dymola, Omola, Ascend, NMF, IDA
- Current version 3.3 rev1, mostly backwards-compatible additions
- Companion Modelica Standard Library
 - Basic Component Models in different domains
Tools supporting Modelica

<table>
<thead>
<tr>
<th>Tool name</th>
<th>Vendor</th>
<th>License</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dymola</td>
<td>Dassault Systèmes</td>
<td>Commercial</td>
</tr>
<tr>
<td>SimulationX</td>
<td>ITI (ESI Group)</td>
<td>Commercial</td>
</tr>
<tr>
<td>MapleSim</td>
<td>MapleSoft</td>
<td>Commercial</td>
</tr>
<tr>
<td>Wolfram System Modeller</td>
<td>Wolfram Research</td>
<td>Commercial</td>
</tr>
<tr>
<td>Amesim</td>
<td>Siemens PLM Sw.</td>
<td>Commercial</td>
</tr>
<tr>
<td>OpenModelica</td>
<td>OSMC</td>
<td>Open Source</td>
</tr>
<tr>
<td>JModelica</td>
<td>Modelon</td>
<td>Open Source</td>
</tr>
</tbody>
</table>
Modelica-related EU ITEA2 Projects 2006-2016

Combined funding
75 Million €
Brief Introduction to the language
Example Models

\begin{verbatim}
 type Voltage = Real(unit="V", nominal = 1e4);
 type Current = Real(unit="A", nominal = 1e4);
 type Power = Real (unit="W", nominal = 1e8);
 type Resistance = Real (unit="V/A");
\end{verbatim}
Example Models

```plaintext
type Voltage = Real(unit="V", nominal = 1e4);
type Current = Real(unit="A", nominal = 1e4);
type Power = Real (unit="W", nominal = 1e8);
type Resistance = Real (unit="V/A");
```

```plaintext
collector Pin
  Voltage v;
  flow Current i;
end Pin;
```
Example Models

```mermaid
model Resistor
  Pin p,n;
  Voltage v;
  Current i;
  parameter Resistance R;
  equation
    v = p.v - n.v;
    i = p.i;
    0 = p.i + n.i;
    v = R*i;
end Resistor;
```

type Voltage = Real(unit="V", nominal = 1e4);
type Current = Real(unit="A", nominal = 1e4);
type Power = Real (unit="W", nominal = 1e8);
type Resistance = Real (unit="V/A");

c connector Pin
 Voltage v;
 flow Current i;
end Pin;
```
Example Models

type Voltage = Real(unit="V", nominal = 1e4);
type Current = Real(unit="A", nominal = 1e4);
type Power = Real (unit="W", nominal = 1e8);
type Resistance = Real (unit="V/A");

criminator Pin

Voltage v;
flow Current i;
end Pin;

model Resistor
  Pin p,n;
  Voltage v;
  Current i;
  parameter Resistance R;
  equation
  v = p.v - n.v;
  i = p.i;
  0 = p.i + n.i;
  v = R*i;
end Resistor;

model Capacitor
  Pin p,n;
  Voltage v;
  Current i;
  parameter Capacitance C;
  equation
  v = p.v - n.v;
  i = p.i;
  0 = p.i + n.i;
  i = C*der(v);
end Capacitor;
Example Models

```
type Voltage = Real(unit="V", nominal = 1e4);
type Current = Real(unit="A", nominal = 1e4);
type Power = Real (unit="W", nominal = 1e8);
type Resistance = Real (unit="V/A");
```

```
connector Pin
 Voltage v;
 flow Current i;
end Pin;
```

```
model Resistor
 Pin p,n;
 Voltage v;
 Current i;
 parameter Resistance R;
equation
 v = p.v-n.v;
 i = p.i;
 0 = p.i + n.i;
 v = R*i;
end Resistor;
```

```
model Capacitor
 Pin p,n;
 Voltage v;
 Current i;
 parameter Capacitance C;
equation
 v = p.v-n.v;
 i = p.i;
 0 = p.i + n.i;
 i = C*der(v);
end Capacitor;
```

Models in DECLARATIVE form!
Modular & Hierarchical Composition

```plaintext
model RCNet
 parameter Resistance Rnet;
 parameter Capacitance Cnet;
 Resistor R1(R=Rnet);
 Capacitor C1(C=Cnet);
 Pin p,n;
 equation
 connect(R1.n, C1.p);
 connect(R1.p, p);
 connect(C1.n, n);
end RCNet;

Equivalent to:
R1.n.v = C1.p.v;
R1.n.i + C1.p.i = 0;
```

Modifier (parameter propagation)

```plaintext
model SimpleCircuit
 RCnet RC1(Rnet=100, Cnet=1e-6);
 Vsource V0;
 Ground GND1, GND2;
 equation
 connect(RC1.n, GND1.p);
 connect(RC1.p, V0.p);
 connect(V0.n, GND2.p);
end SimpleCircuit;
```
Graphical Annotations and Object Diagrams

- Graphical annotations allow to build and visualize composite models graphically
- The underlying model description is textual
Resistor and Capacitor have common features

Factor them out in a base class OnePort

```
partial model OnePort
 Pin p, n;
 Voltage v;
 Current i;

 equation
 v = p.v - n.v;
 i = p.i;
 0 = p.i + -n.i;

end OnePort;
```
Inheritance: Factoring Out Common Features

Resistor and Capacitor have common features

Factor them out in a base class OnePort

partial model OnePort
  Pin p,n;
  Voltage v;
  Current i;
  equation
    v = p.v - n.v;
    i = p.i;
    0 = p.i + -n.i;
end OnePort;

model Resistor
  extends OnePort;
  parameter Resistance R;
  equation
    v = R*i;
end Resistor;

model Capacitor
  extends OnePort;
  parameter Capacitance C;
  equation
    C*der(v) = i;
end Capacitor;
Hybrid models

- Discrete variables: only change at discrete events, otherwise constant

- Equations for discrete variables inside \textit{when}-clauses, only active at event instants.

```plaintext
model OnOff
 parameter Real Threshold;
 RealInput Cmd;
 output Boolean y;
 equation
 when (Cmd > Threshold) then
 y = \textit{not}(\textit{pre}(y));
 end when;
 end OnOff;

model Stepper
 parameter Real Threshold;
 parameter Real Increment;
 RealInput Cmd;
 discrete RealOutput y;
 equation
 when (Cmd > Threshold) then
 y = \textit{pre}(y) + Increment;
 end when;
 end Stepper;
```

- Discrete equations can be freely combined with continuous equations
Computational model: Continuous-time systems

Model (DAEs) \[ F(x, \dot{x}, v, p, t) = 0 \]

Causalization
(solving for $\dot{x}$, $v$)

State-Space representation. (ODEs)
\[ \dot{x} = f(x, p, t) \]
\[ v = g(x, p, t) \]

ODE Time integration

Simulation results
\[ x = x(t) \]
\[ v = v(t) \]
Causalization: Example
### Causalization: Example

<table>
<thead>
<tr>
<th>Component</th>
<th>Equations</th>
<th>Component</th>
<th>Equations</th>
</tr>
</thead>
</table>
| **AC**    | 0 = AC.p.i + AC.n.i  
AC.v = AC.p.v - AC.n.v  
AC.i = AC.p.i  
AC.v = AC.VA* sin(2*AC.PI*AC.f*time) | **L** | 0 = L.p.i + L.n.i  
L.v = L.p.v - L.n.v  
L.i = L.p.i  
L.v = L.L*der(L.i) |
| **R1**    | 0 = R1.p.i + R1.n.i  
R1.v = R1.p.v - R1.n.v  
R1.i = R1.p.i  
R1.v = R1.R*R1.i | **G** | G.p.v = 0 |
| **R2**    | 0 = R2.p.i + R2.n.i  
R2.v = R2.p.v - R2.n.v  
R2.i = R2.p.i  
R2.v = R2.R*R2.i | **connections (effort)** | R1.p.v. = AC.p.v // 1  
C.p.v = R1.v.v // 2  
AC.n.v = C.n.v // 3  
R2.p.v = R1.p.v // 4  
L.p.v = R2.n.v // 5  
L.n.v = C.n.v // 6  
G.p.v = AC.n.v // 7 |
| **C**     | 0 = C.p.i + C.n.i  
C.v = C.p.v - C.n.v  
C.i = C.p.i  
C.i = C.C*der(C.v) | **connections (flow)** | 0 = AC.p.i + R1.p.i + R2.p.i // N1  
0 = C.n.i + G.p.i + AC.n.i + L.n.i // N2  
0 = R1.n.i + C.p.i // N3  
0 = R2.n.i + L.p.i // N4 |
Causalization: Example

After removing trivial equations (a = b, a + b = 0)

1) \( C.i = \frac{R1.v}{R1.R} \)  // \( f(R1.v) \)
2) \( R1.v = R1.p.v - C.v \)  // \( f(R1.v,R1.p.v) - C.v \)
3) \( \text{der}(L.i) = \frac{L.v}{L.L} \)  // \( f(L.v,\text{der}(L.i)) \)
4) \( R1.p.v = AC.VA*\sin(2*AC.f*AC.PI*time) \)  // \( f(R1.p.v) \)
5) \( L.v = R1.p.v - R2.v \)  // \( f(L.v,R1.p.v,R2.v) \)
6) \( \text{der}(C.v) = \frac{C.i}{C.C} \)  // \( f(\text{der}(C.v),C.i) \)
7) \( R2.v = R2.R*L.i \)  // \( f(R2.v) - L.i \)

<table>
<thead>
<tr>
<th></th>
<th>R2.v</th>
<th>R1.p.v</th>
<th>L.v</th>
<th>R1.v</th>
<th>C.i</th>
<th>der(L.i)</th>
<th>der(C.v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Causalization: Example

After applying the Block Lower Triangular Transformation

<table>
<thead>
<tr>
<th></th>
<th>R2.v</th>
<th>R1.p.v</th>
<th>L.v</th>
<th>R1.v</th>
<th>C.i</th>
<th>der(L.i)</th>
<th>der(C.v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

7) \( R2.v := R2.R*L.i \)
4) \( R1.p.v := AC.VA*\sin(2*AC.f*AC.PI*time) \)
5) \( L.v := R1.p.v - R2.v \)
2) \( R1.v := R1.p.v - C.v \)
1) \( C.i := R1.v/R1.R \)
3) \( \text{der}(L.i) := L.v/L.L \)
6) \( \text{der}(C.v) := C.i/C.C \)

\[
\dot{x} = f(x, p, t) \\
v = g(x, p, t)
\]
Causalization: General Case

$\mathcal{N} \times \mathcal{N}$ blocks can show up on the diagonal, $\mathcal{N} > 1$ \textit{(algebraic loops)}

Systems of implicit equations, solved numerically and/or symbolically

$$
\begin{pmatrix}
Z_2 & Z_1 & Z_3 & Z_5 & Z_4 \\
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
\end{pmatrix}
$$
Symbolic Index Reduction

- O-O model building can lead to DAEs with constraints among states
- The DAEs cannot be solved for all the derivatives

\[ C_1 \dot{p}_1 - (q_0 - q_1) = 0 \]
\[ C_2 \dot{p}_2 - (q_1 - q_2) = 0 \]
\[ q_0 - f(t) = 0 \]
\[ p_1 - p_2 = 0 \]
\[ p_2 - p_3 - R_2 q_2 = 0 \]
Symbolic Index Reduction

- O-O model building can lead to DAEs with constraints among states
- The DAEs cannot be solved for all the derivatives

\[
\begin{align*}
C_1 \dot{p}_1 &= (q_0 - q_1) \\
C_2 \dot{p}_2 &= (q_1 - q_2) \\
q_0 - f(t) &= 0 \\
p_1 - p_2 &= 0 \\
p_2 - R_2 q_2 &= 0 \\
\dot{p}_1 - \dot{p}_2 &= 0
\end{align*}
\]

- Pantelides’ Algorithm and Dummy-Derivatives Algorithm

\[
\begin{align*}
C_1 \dot{p}_1 &= (q_0 - q_1) \\
C_2 \dot{p}_2 &= (q_1 - q_2) \\
q_0 - f(t) &= 0 \\
p_1 - p_2 &= 0 \\
p_2 - R_2 q_2 &= 0 \\
\dot{p}_1 - \dot{p}_2 &= 0
\end{align*}
\]

\[
\frac{\partial F}{\partial z} = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & R_2
\end{bmatrix}
\]

Structural Singularity! (high-index DAEs)

\[
\begin{align*}
p_1 &= \frac{f(t) - p_2 / R_2}{C_1 + C_2} \\
p_2 &= p_1 \\
p_{2\text{der}} &= \frac{f(t) - p_2 / R_2}{C_1 + C_2} \\
q_0 &= f(t) \\
q_1 &= \frac{C_2 q_0 + C_1 q_2}{C_1 + C_2} \\
q_2 &= \frac{p_2}{R_2}
\end{align*}
\]
A Successful Use Case

- Multibody model of a V6 Engine from the Modelica Standard Library

\[
\dot{x} = f(x, p, t) \\
v = g(x, p, t) \\
\{ \\
\]

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original variables</td>
<td>12491</td>
</tr>
<tr>
<td>Original differentiated variables</td>
<td>577</td>
</tr>
<tr>
<td>Final number of states</td>
<td>2 (!)</td>
</tr>
<tr>
<td>Linear systems</td>
<td>12x2 + 1x36</td>
</tr>
<tr>
<td>Nonlinear systems</td>
<td>6x2</td>
</tr>
<tr>
<td>Assignments</td>
<td>1334</td>
</tr>
</tbody>
</table>
Computational model: Hybrid systems

DAEs

\[ F(x, \dot{x}, v, m, \text{pre}(m), p, c, t) = 0 \]

Conditions

\[ c = G(\text{relation}(x, \dot{x}, v, m, \text{pre}(m), p, c, t)) \]

Discrete eqs

\[ m = H(x, \dot{x}, v, m, \text{pre}(m), p, c, t) \]
Computational model: Hybrid systems

**Continuous-time Integration**

**DAEs**

\[ F(x, \dot{x}, v, m, \text{pre}(m), p, c, t) = 0 \]

**Conditions**

\[ c = G(\text{relation}(x, \dot{x}, v, m, \text{pre}(m), p, c, t)) \]

**Discrete eqs**

\[ m = H(x, \dot{x}, v, m, \text{pre}(m), p, c, t) \]

- DAEs are solved with constant \( m \)
- Conditions are monitored for changes
Computational model: Hybrid systems

Event detection

DAEs

\[ F(x, \dot{x}, v, m, \text{pre}(m), p, c, t) = 0 \]

Conditions

\[ c = G(\text{relation}(x, \dot{x}, v, m, \text{pre}(m), p, c, t)) \]

Discrete eqs

\[ m = H(x, \dot{x}, v, m, \text{pre}(m), p, c, t) \]

- When conditions changes are detected, the exact event time is numerically computed
- E.g.:
  - Condition \( v_1 > v_2 \)
  - Zero Crossing function \( f_{zc}(t) = v_1(t) - v_2(t) \)
  - Find \( t \) such that \( f_{zc}(t) = 0 \)
Computational model: Hybrid systems

Event handling

DAEs

\[ F(x, \dot{x}, v, m, \text{pre}(m), p, c, t) = 0 \]

Conditions

\[ c = G(\text{relation}(x, \dot{x}, v, m, \text{pre}(m), p, c, t)) \]

Discrete eqs

\[ m = H(x, \dot{x}, v, m, \text{pre}(m), p, c, t) \]

1) Solve DAEs and active discrete equations simultaneously for \( \dot{x}, v, m \)
2) Let \( m = \text{pre}(m) \)
3) Solve DAEs and active discrete equations simultaneously for \( \dot{x}, v, m \)
4) If \( m = \text{pre}(m) \) then resume continuous time integration with constant \( m \) else goto 2
Clocked Variables

- Introduced in Modelica 3.3, based on synchronous language concepts (Lustre, Lucid Synchrone)

- Clock inference based on structural dependency analysis. sample() and hold() break the dependency
Clocked Variables

- Introduced in Modelica 3.3, based on synchronous language concepts (Lustre, Lucid Synchrone)

- *Clock inference* based on structural dependency analysis. sample() and hold() break the dependency graphs

- Automatic clock partitioning
  - \{v1, v2, v3, v4\} continuous time
  - \{vc1, vc2\} clocked Tc
  - \{vc3, vc4\} clocked Tc*4

```modelica
...
Real v1, v2, v3, v4;
Real vc1, vc2, vc4, vc5;
parameter Real Tc = 0.1;
equation
...
vc1 = sample(v1, Clock(Tc));
when Clock() then
 vc2 = previous(vc2) + vc1;
end when;
vc3 = subSample(vc2, 4);
vc4 = 3*vc3;
v2 = hold(vc2);
v4 = hold(vc4);
v5 + v4 = 0;
...
```
Clocked Variables: Use in Modular Models

M. Otter, B. Thiele, H. Elmqvist: A library for Synchronous Control Systems in Modelica
Proceedings 9th Modelica Conference, Munich 2012
Paradigmatic Use Cases
A Gripper for Space Robotics

Three phalanges

Three independent fingers

Tendons

Courtesy: prof. Gianni Ferretti, Politecnico di Milano
The Finger Model

- New components developed for tendon-pulley interactions described by equations
The Actuation Chain
The Overall System Model
Grasping a Cylinder in Space
OOM and Reusability: Do Not Reinvent the Wheel!

- Development effort focused on innovative components
  - Tendon–Pulley Interaction
  - Finger–Sphere interaction
  - Control System strategy and design


20% New models
80% Re-used models
A Once-Through Molten-Salt Power Generation System

<table>
<thead>
<tr>
<th>Case</th>
<th>no. States</th>
<th>no. Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>254</td>
<td>6945</td>
</tr>
<tr>
<td>B</td>
<td>254</td>
<td>6982</td>
</tr>
<tr>
<td>C</td>
<td>301</td>
<td>7554</td>
</tr>
</tbody>
</table>
Modular Decomposition
OOM and Reusability

• Effort concentrated in the innovative components
  – Molten Salt fluid model
  – Preheaters
  – Phase Separator

• Re-use of ThermoPower library framework and components

  20%  New models

  80%  Re-used models
Replaceable Models: a Space Application

Modelling of Satellite Attitude Control Systems
with reconfigurable sensor and actuator configurations
Replaceable Models: a Space Application

- Standard interfaces defined for replaceable components
- Very concise representation of a specific configuration
  - alternative design configurations
  - different levels of detail @ different design stages
- All redeclared elements taken from a library of components

```model Example
import SpacecraftDynamics.Spacecraft.*;
inner Environment.World world;
Implementations.SpacecraftBase spacecraft(
 redeclare model SensorBlock =
 Sensors.Implementations.GPS_StarTracker_MagField
 (redeclare model StarTrackerConf =
 (redeclare model StarTracker =
 Sensors.Components.StarTrackers.StarTrackerBase
end Example;
```
Replaceable Models: a Space Application

- Standard interfaces defined for replaceable components
- Very concise representation of a specific configuration
  - alternative design configurations
  - different levels of detail @ different design stages
- All redeclared elements taken from a library of components

```model Example
import SpacecraftDynamics.Spacecraft.*;
inner Environment.World world;
Implementations.SpacecraftBase spacecraft(
 redeclare model SensorBlock =
 Sensors.Implementations.GPS_StarTracker_MagField
 (redeclare model StarTrackerConf =
 (redeclare model StarTracker =
 Sensors.Components.StarTrackers.StarTrackerBase
end Example;
```

All model variants are consistent and up-to-date
Avoid copy-paste-modify-use-throw away cycle
Replaceable Models: a Space Application

GUI support for model configuration (no manual writing of code)
The Future
Emerging Large-Scale Engineering Systems

- Electrical Smart Grids, including thermal users and storage (heat pumps, solar thermal systems)
- Self-driving Cars
- Cyber-Physical Systems
- Internet of Things
Emerging Large-Scale Engineering Systems

- Electrical Smart Grids, including thermal users and storage (heat pumps, solar thermal systems)
- Self-driving Cars
- Cyber-Physical Systems
- Internet of Things

- System (and control!!) design based on abstractions
- Correct behaviour depends on etherogeneous, multi-domain physical behaviour
- Things can go wrong and break design assumptions
Emerging Large-Scale Engineering Systems

- Electrical Smart Grids, including thermal users and storage (heat pumps, solar thermal systems)
- Self-driving Cars
- Cyber-Physical Systems
- Internet of Things

- System (and control!!) design based on abstractions
- Correct behaviour depends on heterogeneous, multi-domain physical behaviour
- Things can go wrong and break design assumptions

Simulation-based verification of system performance with adequate physical detail

OOM and Modelica are ideally suited (current tools still aren’t)
The Challenge

• Focus of currently available Modelica tools: individual systems
  – One/two robots
  – One power plant
  – One car
• Typical complexity today: 500 to 20000 equations

Handle 10,000,000 equations or more

Develop appropriate numerical integration algorithms for these systems
Example: Models of Continental PG&T Grids

equation
  // mechanical equations
  Snom GC_mod^Ta^der(omega)/omega = Pm_req - Pe;
  der(delta) = omega - omega_ref;
  // lead-lag vd
  Tqo*der(ed) + ed = (Xq - X)*iq;
  ed = vd - X * iq;
  // lead-lag + lag vq
  Tdo*der(eq) + eq = vf - (Xd - X)*id;
  eq = vq + X * id;
  // normalization
  Vd = vd*V ll_nom_mod;
  Vq = vq*V ll_nom_mod;
  Id = id*Snom GC_mod/V ll ll_nom_mod;
  Ig = iq*Snom GC_mod/V ll ll_nom_mod;
  // conversion from Park ref. to pin ref.
  Vpr_ll = Vd*sin(delta) + Vq*cos(delta);
  Vpi_ll = -Vd*cos(delta) + Vq*sin(delta);
  Ipr = Id*sin(delta) + Ig*cos(delta);
  Ipi = -Id*cos(delta) + Ig*sin(delta);
  // power calculation
  Pe = 3 * (Vpr*Ipr + Vpi*Ipi);
  Qe = 3 * (Ipr*Vpi - Vpr*Ipi);

algorithm
  // Detection of high current - side a
  when I_a_mod > Ilmax_mod then
    TimerOn_a := true;
    TimerStartValue_a := time;
  end when;
  when I_a_mod < Ilmax_mod and pre(TimerOn_a) then
    TimerOn_a := false;
  end when;
  // Handles the actual status of the breaker - side a
  when pre(TimerOn_a) and
time > pre(TimerStartValue_a) + Ilmax_delay then
    BreakerStatus_a := 0;
  end when;

equation
  Yl1_act = Yl * Complex(BreakerStatus_a * BreakerStatus_b);
  Ysa_act = Ys * Complex(BreakerStatus_a);
  Ysb_act = Ys * Complex(BreakerStatus_b);
  Ia = I1 + Isa;
  Il + Ib = Isb;
  Isa = Ysa_act * Va;
  Isb = Ysb_act * Vb;
  I1 = Yl_act * Vl;
  Va = V1 + Vb;

Courtesy: Politecnico di Milano, Dynamica, CESI, TERNA
Example: Models of Continental PG&T Grids

- Improvements of the OpenModelica compiler already achieved the 1,000,000 equations goal
- Realistic use cases:

<table>
<thead>
<tr>
<th>Network</th>
<th>Generators</th>
<th>Lines</th>
<th>Transformers</th>
<th>Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>RETE_C</td>
<td>74</td>
<td>369</td>
<td>583</td>
<td>56386</td>
</tr>
<tr>
<td>RETE_E</td>
<td>267</td>
<td>1458</td>
<td>1202</td>
<td>157022</td>
</tr>
<tr>
<td>RETE_D</td>
<td>2317</td>
<td>1946</td>
<td>2489</td>
<td>579470</td>
</tr>
<tr>
<td>RETE_G</td>
<td>407</td>
<td>6833</td>
<td>2824</td>
<td>593886</td>
</tr>
</tbody>
</table>

**Performance results, times given in s**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RETE_C</td>
<td>24</td>
<td>24</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>RETE_E</td>
<td>73</td>
<td>67</td>
<td>35</td>
<td>44</td>
</tr>
<tr>
<td>RETE_D</td>
<td>334</td>
<td>315</td>
<td>123</td>
<td>111</td>
</tr>
<tr>
<td>RETE_G</td>
<td>318</td>
<td>303</td>
<td>144</td>
<td>186</td>
</tr>
</tbody>
</table>

- One order of magnitude improvement expected by end 2017 in model building time (12 min → 1-2 min)
Multi-Rate Integration Algorithms

• Features of typical large-scale distributed etherogenous systems
  – Local connectivity
  – Dynamic decoupling between distant units
  – Localized activity
  – Co-existing different time scales

• Single-rate integration algorithms are inefficient: entire system state vector computed at the pace of the fastest component
Multi-Rate Integration Algorithms

• Features of typical large-scale distributed heterogeneous systems
  – Local connectivity
  – Dynamic decoupling between distant units
  – Localized activity
  – Co-existing different time scales

• Single-rate integration algorithms are inefficient:
  entire system state vector computed at the pace of the fastest component

• Multi-rate algorithms:
  – Global time steps
  – *Automatic* partitioning in active and latent states based on error estimation
  – Iterative refinements of active states using interpolated latent state values
Example: Transient of a Power System

- Many generators and loads
- Very fast electrical phenomena (swing equation)
- Fast turbine dynamics
- Slow thermo-hydraulic phenomena (boiler dynamics)
- Control loops with widely different bandwidths

- Activity diagram of a load shedding transient
The future of EOOM as I see it

Modelica models of increasingly large and complex cyber-physical systems

EOOM Tools with innovative methods handling 10,000,000 or 100,000,000 equations

New multi-rate algorithms exploiting dynamic decoupling, local activity and different time scales
Acknowledgments

Prof. Claudio Maffezzoni

Colleagues and PhD Students @ Politecnico:
Alberto Leva, Gianni Ferretti, Marco Lovera
Tiziano Pulecchi, Stefano Trabucchi, Akshay Ranade

Prof. Peter Fritson of Linköping University
and the whole OpenModelica Development Team

All the colleagues of the Modelica Association
Thank you for you kind attention!